Boronate Complex Formation with Dopa Containing Mussel Adhesive Protein Retards pH-Induced Oxidation and Enables Adhesion to Mica
نویسندگان
چکیده
The biochemistry of mussel adhesion has inspired the design of surface primers, adhesives, coatings and gels for technological applications. These mussel-inspired systems often focus on incorporating the amino acid 3,4-dihydroxyphenyl-L-alanine (Dopa) or a catecholic analog into a polymer. Unfortunately, effective use of Dopa is compromised by its susceptibility to auto-oxidation at neutral pH. Oxidation can lead to loss of adhesive function and undesired covalent cross-linking. Mussel foot protein 5 (Mfp-5), which contains ∼ 30 mole % Dopa, is a superb adhesive under reducing conditions but becomes nonadhesive after pH-induced oxidation. Here we report that the bidentate complexation of borate by Dopa to form a catecholato-boronate can be exploited to retard oxidation. Although exposure of Mfp-5 to neutral pH typically oxidizes Dopa, resulting in a>95% decrease in adhesion, inclusion of borate retards oxidation at the same pH. Remarkably, this Dopa-boronate complex dissociates upon contact with mica to allow for a reversible Dopa-mediated adhesion. The borate protection strategy allows for Dopa redox stability and maintained adhesive function in an otherwise oxidizing environment.
منابع مشابه
Interfacial pH during mussel adhesive plaque formation.
Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in unde...
متن کاملpH Responsive and Oxidation Resistant Wet Adhesive based on Reversible Catechol–Boronate Complexation
A smart adhesive capable of binding to a wetted surface was prepared by copolymerizing dopamine methacrylamide (DMA) and 3-acrylamido phenylboronic acid (AAPBA). pH was used to control the oxidation state and the adhesive property of the catechol side chain of DMA and to trigger the catechol-boronate complexation. FTIR spectroscopy confirmed the formation of the complex at pH 9, which was not p...
متن کاملThe staying power of adhesion-associated antioxidant activity in Mytilus californianus.
The California mussel, Mytilus californianus, adheres in the highly oxidizing intertidal zone with a fibrous holdfast called the byssus using 3, 4-dihydroxyphenyl-l-alanine (DOPA)-containing adhesive proteins. DOPA is susceptible to oxidation in seawater and, upon oxidation, loses adhesion. Successful mussel adhesion thus depends critically on controlling oxidation and reduction. To explore how...
متن کاملMussel protein adhesion depends on thiol-mediated redox modulation
Mussel adhesion is mediated by foot proteins (mfps) rich in a catecholic amino acid, 3,4-dihydroxyphenylalanine (dopa), capable of forming strong bidentate interactions with a variety of surfaces. A tendency toward facile auto-oxidation, however, often renders dopa unreliable for adhesion. We demonstrate that mussels limit dopa oxidation during adhesive plaque formation by imposing an acidic, r...
متن کاملMussel-Inspired Catechol Biomaterials for Surgical Repair and Drug Delivery
The adhesive proteins employed by mussels have very specialized amino acid compositions undoubtedly related to the particular challenges of achieving permanent adhesion in the wet marine environment. Mussel adhesive proteins (MAPs) are known to contain high levels of the catecholic amino acid 3,4-dihydroxy-L-alanine (DOPA). Catechols are versatile in a chemical sense, participating in redox rea...
متن کامل